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1. Introduction. In this paper we describe a systematic approach to the

dimensional reduction of nonlinear, monotone boundary value problems. Our

work is motivated by problems arising from considering "thin" mechanical

structures such as beams, arches, plates and shells, cf. [2] and [26]. Let

a = ]0; lx] - C; c[ be a domain in R2 . We present an efficient procedure

to produce approximate solutions to the above boundary value problems defined

over Qc Led by intuition, we expect that the solution can be approximated

well by linear combinations

N c (X )* (X2/C) ;x I  0;0], x2  [-C,C].( -=
We select the basis- or "Ansatz" functions so as to obtain

maximal order of convergence as E tends to zero. I{JI}j O are found as

solutions to Galerkin systems of ordinary differential equations. We consider

three asymptotic ranges of loads (infinite, finite, and zero limit) and the

selection of "Ansatz" functions is shown to be independent thereof. This is

of course of major importance for practical computations. Estimates for the

order of convergence as N tends to infinity are established (as they must

be, since e is never infinitesimally small in practical applications and

since a required accuracy is often not obtainable by taking more terms in the

asymptotic expansion). The span of N is shown to be optimal in the

sense of N-widths in approximation theory.

This method differs from another method of dimensional reduction widely

used in structural mechanics, that of asymptotic expansion in c , see

Friedrichs [8], Friedrichs and Dressler [9], Reiss and Locke [28],

Gol'denweizer [11], and Ciarlet and Destuynder [6]. The latter method is

2 
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limited in its practical scope since it deals with rough input data by

introducing boundary - and/or interior layer expansions which often are diffi-

cult to obtain without extensive analysis dependent upon the particular case

at hand. This limits the generality of the latter approach. We propose to

deal with such nonsmoothness by increasing N near the layer.

The aforementioned characteristics of our approach are practically

feasible as witnessed through our computational experience in the last section

of the paper.

We remark that this work was inspired by the papers of Vogelius and

Babuska [30, 31, 32] on dimensional reduction for linear, elliptic boundary

value problems.

3
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2. Notation and model problem.

Let A be an operator of the form

(1) Auv) - f F(IDuj )Du*Dv dx,

where x - Cx1,x) SI - ] 2,1[xJ-e,E[ Denote by rc - [0,1] I +F-l

and [0,1] x {-Ei respectively, and by rE = (101 x]L,~) L i x-E'c[)0

so that an r r 0  disjointly. Let Du - (au/ax1 , au/ax2) and

loul = 2 (au/ax.)2) 1/
J.1

Let for some n +

(2) F(t) _ 1 + tn V vt E R~ + jol

for the sake of explicitness. What is to follow could be extended to other

choices of F without much imaginative effort, cf. [27].

We consider the minimization problem: Find uEsuch that

(3) cE (W1,2n+2 (QE) and E WuE) =inf E(v)

(0)0)

where

W 2+2(SE)= Wl, 2n+2 ,F- () IV V, - 01 ,} and

E(v) - B(u) - v)

where the Fre~chet derivative of B at u is Au, and where G E (W 1 12n+2
(0)

-the dual space of W1'20) 2  is defined for all Ri~ and all

L & 2n+2C0,1) through

G(v) - 1l S 1j'-[~lp)+ i dx10 ( 1) Evx 1 c 1 ~ 1 -)



Here, j is introduced in order to investigate three asymptotic ranges of

"loads" on r According to whether p > 0, i = 0, or p < 0 , we have an
±1

infinite, finite, or zero "load" (1 can be viewed as a scaling constant; it
x2

is the Jacobian of the transformation (x1 ,x2) * (;,n)-(x 1 ,E-)).

The minimization problem (3) is formally equivalent to the homogeneous

Neumann/Dirichlet boundary value problem

-D.(F(IDuE2 )) Du' = 0 in 9'

(4) u = 0 on r,

F(IDueI 2 ) auC/3V = BeI-4 on re±'

where v is the outward normal, and furthermore, (3) is equivalent to finding

u5 ( W1 )2n+2 , satisfying
(0)

(5) V v ( W1 '2n +2 (9e) AuE(v) = G(v).

Because E is strictly convex and limivI +, E(v) = , (3) and (5) have a
unique solution ue W1 2n+2 (QE) , cf. Visik [29, Morrey [25], Glowinski &

(0) '2]

Marocco [10], or Ciarlet [7]; we define Ivi = ( IDvi 2n+2dx) 1/2n+2

(using Friedrich's inequality).

Finally, we scale the problem as follows

(6) u (xl2 )  = u(Xlox 2/C) (Xltx 2 ) E f

-1

Denote by ( ,n) = (xl,x 2/c) , DC = ( I -, 1 a /n) , and

Q ]0,1[x] - 1,1[ (5) becomes: V v E 12n+2 (Q)
(0)

5
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(7.a) f F(IDEuI)DEu DEV E ddn
= fl B()[v(E,1) + v( ,-1)] E-d.

0e

In the remainder of the paper, we shall denote u by u , and the left hand

side of (7) by Au(v) and the right hand side by G(v) for any

tha) EW1(2n+2 (Q) Thus (7) can be written (find u w Wl 2n+2 2) such' " (0)

that)

Mb) V V ( W1 02) (Q) , Au(v) = G(v).

Also, W1, 2n+2 (,) is endowed with the norm ivi = (fJjD V12n+ 2 ddn) 1/2n+2

(again with the use of Friedrich's inequality; here 101 2 independent of

E ). Note that lV IQ = lvi

The scalar problem (4) is a mathematical model of the physical models of

antiplane shear in finite elasticity, see Gurtin & Temam [12], Abeyaratne [1],

and Knowles [16, 171, and the torsion problem, see Kachanov [15] and Langen-

bach [20]. We are trying to express a nonlinear constitutive (stress-strain)

law, so this covers finite elasticity only insofar as there exists some in-

herent scalar quantity in our problem. In [1] e.g., the stored energy func-

tion W is assumed to depend only on the first invariant of the left Cauchy-

Green strain tensor: 3 + jDuj 2 , where the inherent scalar is u(x1 ,x2 ) the

x3-displacement of a prismical body along the x3-axis, see [] sections [2]

and [5]. In the absence of body forces, the problem is described by

D(W'(3+,Duj2))Du = 0 in 9 with boundary conditions.

The most direct interpretation of (4) is that of the (stationary) heat

equation with a nonlinear thermal conductivity (dependent upon the temperature

gradient).



3. The Galerkin approach to dimensional reduction.

In this section we present some known results. We will consider the

Galerkin approach to solve (7) and (2) on a proper subspace VN which is

characterized by the Ansatz functions jip }N
j j=0

(8) VN N j c.( )1jn):{c.} -  1,2n+2 (0,1)1
J=0 a

More precisely, define uN to be the solution in VN of

(9) Au N(v) = G(v) ,V v E VN,

where A and G were defined in the last section's closing paragraphs. We

note that the problem (9) is equivalent to the minimization problem (3)

restricted to VN, which had a unique solution (see references mentioned in

connection with (3), same argument).

The operator A:W 1, 2n+ 2  ,2n+2 *
() (0) Is

i) strongly monotone, i.e., j X:R+ U1 01 - R , strictly increasing

with x( 0 )=O and lim X(t)=, such that (Au-Av)(u-v) a X(Nu-vI)Du-vI

V u,v E W1 ,2n +2 0 , and(0) ( )  an

ii) Lipschitz-continuous for bounded arguments, i.e., V r>0 3 r(r)

such that if IuIIvI S r , then IAu-AvI < r(r) Iu-vI ; cf. Ciarlet [71,

sec. 5.3.

This is proved easily along the lines there which are based upon the work

of Glowinski & Marocco [10] and could be generalized to hold for polynomials

F that satisfy (sF(s2 ) - tF(t 2))/(s-t) > 0, V s,t>0, s * t, see [14]. It is

also known (cf. Ciarlet [7] or Glowinski & Marocco [10] that when A satisfies

7



these two properties, then there exiscs C 'ndependent of VN such that

x(Iu-u NI C 1ff u-v N I

2n +1
In our case, 37 c>O: x: t +azt YtZ 0 . This is a nonlinear generaliza-

tion of Cea's lemma.

Since C in the last inequality depends on e , we give a proof of the

following.

Theorem 1. For n E N, let A:W 0 ~ +(a) - (W1 2 ( ) ()* be defined as

above. Then there exist positive constants a~ M , C independent of c

such that:

Ci) (Au-Av)Cu-v) a a Iu-vI n+

(ii) IAu-Avl~{M( evI)2n + 2n(~ juv

i-u 1-U1

(iii) Jul is C E , u~ jU 1 C E

Proof: Mi In Ciarlet [7], e.g., it is shown that there existsa

(112n- l2nyx )2

1Ix-yt 2n+2  ax Vx'y H x *y

which yields Ci) immediately. (ii) Also, in Ciarlet [7] is given that

there exists M

I XI2n x-jyI 2n H1:SM V x,y E 2 x*y
lx-YlI(l+lyl) 2n ~K

which yields that

8



IAu-AvI * = sup I(Au-Av)(w)I

S su I f 'ID eu-D CVI(D Eul+IDVI) 2 n ID wjed dn

+WS a ~~IleW~~di

f IDe U- E v ID wje dn

2nn
Ssup IM lu-vI Iwi (IuI+IvI) 2n+ Iu-vI Iwi 2e n+1I

IIS

using Holder's inequality twice (p1  2n+2, p1, = 2n+2/2n-1; P2  2n+1, p2;

2n+1/2n) and the fact Cx+y) 2n . 22n-1 (x 2n+y2n) for x, y > 0, see Korovkin

[18] p. 25. Thus (ii) holds. For (iii),

lul 2n +2 S Au(u) = G(u) S IGI*lul

with u replaceable with uN.

1-p- 1-

1 2n+2 2+

since the trace operator maps W 1,2n ) continuously into Ln2 (r) with a(0)
As * 1

norm containing a factor E - n2 ; (iii) follows.

Combining inequalities (i), (ii), and (iii) in Thin. 1 we finally arrive at the

following pair of inequalities in (10)

9

'd~~~~ N N P~*



2n(1-i- - )
2n+2

2 1

(2n+1) 2  2n1
Iu-UNI < C E inf IU-VN| , for p > 0

(10) N N

n 1

IUuNI C (2n+1)(n+1) inf U-VNI 2  , for 6 0
VN ( VN

where C does not depend on c .

Proof of (10): To arrive at the E-dependence we present a standard argument:

alu-UNI 2n 2  (Au-Au N )(u-uN)

(Au-Au N )(u-v N )

S jAu-Au NI U-VNI
n

S {M(lul + luNI)2n + 2c n+1 Iu uNI IUVNI

1 -I1
with * I~2n +1

with lul , IUNI S C E , the result follows.

Due to this reduction in power in Cea's lemma (by 2n+1) it becomes of

interest to obtain a quasioptimal bound in W1'2 under further assumptions.

This was done by Kosler [19]. We present the argument for our case. The

final estimate is (13).

p1,2 r 2 1/2
For v " W(;) (Q), let Iv12  (JDv Ed~dn) Note, that

trivially

(11) (Aw-AW2 )(wl-W 2 ) w 2 E 1 (2n+2 )
1AlA2)w-2 1w-w 2* Vwl 1 w2  W a) .

(0)=

10
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If we now invoke the Mean Value Theorem we get,

Vw1 ow 2 E W f)W v6 12+

(0 (0)

~JAw 1-Aw 2 (v)I I f a F(ID Ew 1 1 1 (Dcw21 2 2 I cd~dl

(12) 1 f D(F( 1e1 2) (DCw 1 -D cw 2) D Cved& dni

SC (ID Cw 1I1. + IDEw 2 1.)2n l.-w 212 112

where we have bounded the Hessian (of jR2 3 e 1 F(161 2) e R 2) at some

intermediate point: C(ID EI,)2 S C(ID Ew 1I.+IDe w2I1.)2 Combining (11) and

(12), we get

IuN-vNI2 ~AN-AvN)(N-vN)

=(Au-Av N (u N-v N)

S C(ID Eul + ID Ev N 1)2n~u~v NI2IuN-vNI2

which with the triangle inequality establishes the following estimate

for any vN E V n w JW' provided u ( wl,2n32 lw 1 ,00

We hereby close our remarks about properties of Galerkin solutions and

turn our attention to the selection of the basis- or Ansatz functions.



4. Asymptotic expansion (for the selection of basis functions).

Let uN be the Galerkin solution in VN (given by (8)) of the variational

problem in (9). In the next section, we shall select the basis - or Ansatz

functions {ij I such as to establish an optimal order of convergence of
j=O

UN to u (both dependent upon E ) as E tends to zero. To this end we

employ in the present section the method of asymptotic expansion and formal

matching to "solve" the scaled version of (4). That is, expand u as follows

W(14) u(,n) = (iJ,) p(ij)

i ,j =0

for {u(i'J)} i , and p to be determined. These results will then be

applied in the next section in settling said convergence as E tends to

zero. It will turn out that the basis functions to be selected are the ones

predicted (from the form of u(i j )) by the asymptotic expansions. Recall that

formally, (9) and (4) are equivalent by an application of the divergence

theorem.

Lemma 1. The initial exponent and term in the expansion (14) are:

i) For P < 0 :

p(0,0) = - u (0,0 ) = C0(C) satisfying

C = - , C (0) = C0 (1) - 0 ;

(ii) For u - 0:

p(0,0) = 0 , u (0,0) (n= C () satisfying

"' 2n+1 ,
C + ((C0 ) )21 -8 , C0 (0) = Co(1) - 0 ;

12M IM 111111, ill 65



(iii) For pi > 0

p(O,0) = - n1 , u (01)(,n) = C0 ( ) satisfying

2nn 1

((C0  2n ) 1 -8 C C(0) =C 0 (1) =0

Also, the first n-dependent term has exponent 2 + p(0,0) in all three cases

(1) - (iii).

Proof: Let v =u (0,0) a (a = p(0,0)). Substitute v for u in the

scaled version of (14):

D(I + IDC vI2n) D~v

U(0,0) Ca-2 +(0,O0) ) n1C(2n+1)(a-1)-1

0 + higher order terms

with boundary conditions at ni= 1:

u (0 ,0 ) Ca-1 + (u(O 0)) 2n+1 E(2n+l)(a-1) = ±B-(OC1)j + h.o.t.

Distinguishing between whether a<1, a=1, or a>1, one learns in either case

from the differential equation that u (0,0) does not vary with ni and then
n

from the bounda'y conditions, u (0,0) = 0, such that u (0O) (E~) = (0)

To conclude the remainder, let the first n-dependent term be called u(i~j) and

set v - C0 Ca + u(i~I)Eb, pC0,0) - a < b -p~i,j) and substitute once more for

DC( + (C') 2 E2a + C I)i J) Ea~b +((i J) 2 E2b (U(i J) 2 C2b-2n

C 0 0

Ia (i J) b (i J) b-1X (C 0 C +u E , u C )

=0 + h.o.t.

13



with the boundary conditions at n ±1

0 DCV n)u (J) ± BW(e) b- + h.o.t.

Distinguishing between whether a < 0, a - 0, or a > 0, one learns after

lengthy calculations (formal matching) in each case that:

if a < 0: then ~i=-(2n+l)a > 0, b - 2 + a, and

((C0 of ) 2n+ -0 with C 0(0) - CC0 1) = 0;

if a = 0: then P. = 0, b - 2, and

C 0 it(+ C of) 2n1) - -0 with CO(0) - CO(1 - 0

if a > 0: then ji=-a < 0, b - 2 + a, and

11

C =B- with C (0) - C (1) - 0

Now, distinguishing between a < 0, a =0, and a > 0 in each of the

cases (i, (ii), and (iii), the proof is completed.

Theorem 2. Let 0 < 0 and 0 satisfy

B ( C -(OM1 and V k ( N, a (2k) (0 ) = 8 (2k) (1) - 0

Then- the exponents in (14) of the asymptotic expansion for u are given by

(15) p(i,J) - 21-(2j + 1) p V ',J MN;

the basis functions are polynomials in ni of even degree for fixed ,and

are determined by the recursive formulae (17) and (18).

1 J4



Proof: Define [i,j] - 21 - 2JU - p(i,j) + U , i,j ( N; we concatenate

terms in (14i) according to the following rule (equivalence relation):

u(li)- U ((202 =<> [i1 'I] - [i2 , I

1 = 1 if j1-J

1 2 i

il- -J2 if j

If we differentiate through in the scaled version of (J4), we get:

L2F'(T)u 2+ F(T)]u + [ ! (Tu ]

2 2 E1 E

+EC -F (T )u2 +-1F(T)] u
4n C2 rnn

0,

where T denotes ID Eu12 = u2  + F-2U2 and Fis defined in (2).
ni

Define

v(i,j) =(ii Pj1  (i 2 'j 2 )

i Li1 i2 PJ1 +J2 ] jj

(i~j) . x+ ij (i 1 ,j) un( 2 J2 )

V2 ~j = [Ij u1 u (22
2[ 1 +i 2 91 +j 2] S TiJ Tinu

Ei 1 , I i 2 , Ei 2 ,J2 I 2

15



With these we express

(u )2 = 2 I , where NI  (iJ) E [ i ' j ]

i,j ,-0
-2 0

U & = -2 2 0 , where

c 2 0 = 1 O(ij) [ ij] c2 o(i+1'j) [ij]

[i,jJ:2 [i+I,j].2

2 - 2p 4
(un) = -EN 2, where

E4N 2  I V (  4 (i+2,j) Ei,ji]

[i,j]>4 [i+2,j]>4

Substituting these in (16), we obtain

C-(2n+)iu I [2n(N 1 + c 2 N2 )n-1 NI + (N + E
2 N2)n] I : (i[j) [ iJ]

1 2 1 1I2, ,j =0 &

+ [4n(n1+c 2 N2)n-10] 0 [E2 1 (i+1'J) c[i ' j]]
[i+1,J],2 En

+ [2n(N1 +E 2 N 2)n- N2 +c- 2 (N1 +c 2 N) n ] x [c2 I u(i+1'J) £[i'J]]l

i,j .0

+ u(i+1,j) c Ei]]1 I

C[i+1,J]>2 nn

=0

where we have used Lemma 1. If~ we multiply by c (2n~l)ii and list terms in

16



descending order in terms of upper index pair for a given power [i,j], we get

(17) 1. u(i+1,j+n)e[i,j] + I . (i,j+n) [i~j]+R=
[i+1 j-n]Z2 nn [i,j+n]aO C e +

R is an abreviation for the first {...} in the previous equation and

contains as leading term (Co') 2n u(i+1j) E[ij] If we multiply the
nn

boundary conditions through by e 2n+l)p1 , we get

(18) (i+l,j+n) [i,j](18) [i+1,j +n] 2 Un

+ [NI + E N2 ] n n u (i+1,j) E[i,j]

= + E() 2np at n = ± 1

Fix [i,j]. Solving the Neumann problem (17) and (18) for u(i+lj+n) gives

rise to a solvability condition at n = ± I yielding an ordinary differen-

tial equation in & fixing an additive function in u(i.j+n) It is in this I

O.D.E. with its 0 Dirichlet boundary conditions that the conditions on B

become necessary and sufficient. The necessity is most easily seen via an

even extension about & = 0 and E = 1 . Together with Lemma 1 this deter-

mines u( i j) uniquely, i,j M. The u(i j ) are even polynomials in n for

fixed , in fact induction using (17)-(18) yields that u (iJ ,) is of

degree 2N for 2NS[i,j]<2N+2.

17
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We remark that Thm. 2 would hold for u = 0 as well if we merely drop

the j-term in p(i,j) and combine the leading term in R and the leading term

before C in (17) to (1 + C '2n) u(i+1) and similarly in (18). Now foro nnl

"> 0.

Theorem 3. Let i > 0 and let 8 satisfy

8 C'(0,1) and V k ( N, 8 (2k) (0) = 8 (2k) (1) = 0

Then the exponents in (14) of the asymptotic expansion for u are given by

(19) p(i,j) = 2i + 2j-1 i,j 6 N
2n+1

the basis functions are even polynomials in n for fixed ,and are

determined by the recursive formulae (20) and (21).

Proof: The same as the proof of Thm. 2, except that the leading term in (17)

now is the one from R, (C ) 2n u (i+1,j) and the two first terms in (17)

now have indices (i+1,j-n) and (i,j-n) respectively.

(20) (C )'2n u(i+1,j) [i,j] + I (C )2n u(i~j) [i,.j]

[i+I,JI>2 0 nn i,j =0 0

R u(i+luj-n) E[ij] + u(i,j-n) [ij]
+ [i+1,j-n]=2 nn[i,j-n]>=0

0,

where R is R excluding the two first terms of (14) with p(i,j) given by

18



* (19). Similarly, we get for the boundary conditions at n = + 1:

ENI+e 2 N2]n I u ( i + 1 , j ) 
F-[i'j]

2 i+l,j]>2 n

(21)Nu(i+l,j-n) E i,j]

2i+l ,j-n2n

= _+ 8()

Again we have to concatenate the series according to an equivalence relation:

u ~j1 ) -u (i<2 J2) <=> [i 11'i] = [i 2 'J 2 ]

<= I - 12 ,f J1j

1 2 _ 1 if j*ii J2 2n+1I

Also here, u (i'J)( ,-) is a polynomial in n of degree 2N for

2N S [i,j] < 2N + 2

We remark that the above method is quite general. It could for instance

be generalized to a layered material where F might depend also on n . In

such cases we would no longer get even polynomials in n as Ansatz functions,

but the same type of recursion formulae would determine u i~j)'s n-dependence

and the p(i,j) would remain the same.

19



5. The selection of basis functions.

We will now apply the results from the last section to the selection of

the basis- or Ansatz functions 1j=O * This selection fixes the sub-

spaces VN as defined in (8), and we let u and uN be the solutions of (7)

and (9) respectively. The aim of this section is to make said selection so as

to have optimal order of convergence of u-uN as E tends to zero at fixed

N.

Before we state and prove convergence of uN to u for e tending to

zero in the three asymptotic ranges characterized by the sign of P , we let

D1 be the operator defined by Diu = (d 2u/dE 2 ) mapping Dom(D1 ) ;

W',2n+2(O ) 11 W 1, 2n+2 (0,1) 4 L2n+2(0,1)0

Theorem 4 Let p = 0 and n Z+

VN N, 3 C. independent of E such that, if B 6 D(DIN  then

2N+2 - n

2 (n+1)(2n+I)
(2n+I)

IU-UNI CN

Proof: For convenience, let n = 1. Let

N 2j
U N I u JN

JN

where u (&,n1) = X jN WIP' ()(n). Then
JN i=0 1 1

N 2J N 2
J.N JN C = JNu 2j 1( 2-

20
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On the grounds of denseness of WI1 4 (0,1) 0 W '
4 (-1, 1) in W1 4  () and

0 ' (0)

the fact that Au N  (W (;)(0)) , we restrict v to be of the form c • d.

where c t W1 ;4 (0,1) and d ( W 1 '4 (-1,1) , for convenience. Then (9)

becomes with uN

-2) N 2j N 2-ffl (1 IDE -uI( I (U~Q ,N ) Cu ) U E 2-)
N =0 j =0

-1

(cd, E cd') d~dn

(22)

( f a(E) cd d

- 2 j B cdE d(1)
0

for any such v which is even in n (we shall let v = u- uN, even in n)

and where

D N2 2n -2
1 + ID = [(uON) I -

+ + (uON) 2 + 2 (uON) (UIN) 3
E n ni

+ [2(uON) (uIN + 2 (uON) (u 2 N) +(U1N2E

n n n

[2(uN-1,N)
( u NN + NN 2 1

+ [(U NN) 2 4N]

21



Note, if uN was known a priori to be smooth, we could apply the divergence

theorem and get a second order D.E. with B.C. a la (17) and (18) modified by

the remark following Thm. 2. This justifies the choice of powers of E in

U N

The left hand side of (22) has coefficients of E raised to powers up to

and including 2N-1 ; these coefficients remain unchanged if we increase N

- 4
To see this, first notice that the coefficient equation for e in (22)

reads

f J (uON)3 cd' d~dn = 0

r)

and yields (UON) = 0. Next, the coefficient equation for e reads:

f f 0 + (u ON2 )(( ON) c'd + (u 1) cd') d~dn

= 2d(l) f Bc d
0

We continue to the coefficient equation for c 2N-I

f f ( (uON) 2)((UN-1,N) cd + (u NN cd')

2N-2 ID ud 2d
+ (the coeff. to 2 in IEuNI )((uON) c'd + (uIN) cd')dd

* T1

=.0

These equations do not change if we increase N . Furthermore, we can solve

them exactly; if we integrate by parts we get the first N equations for the

22



2N (2k) (2k)

asymptotic expansion (possible if a E c(o,1) with a2(0) - 82(1) - 0

for OSkSN) , see Thm. 2 with subsequent remark. However, the coefficient

equation for e 2N+1

ff a (+(Uo) 2) ((U NN c'd) +

+ (the coeff. to 2N in IJD uN 2 )((u ON) c'd + (UIN ) cd')dd

=0

up to the coefficient equation for E 6N 1 (highest power present):

3-Sf (UNN) 3 c'd d~dn = 0

will change as we include more basis functions. Define uN (modulo an

N N 2j
additive function of ) to be that exact solution ( u of the

j =0 jN

coefficient equations of e-3, E 1 E 2N-1 {u jN}N is thus
j=O

defined iteratively provided 8 E D(D 1 ) , see Thm. 2. Furthermore, if we

suppose B E D(D N) , the coefficient of 2N+In A7uN(v) can be written

as

- f ( + (u ) )((U) cd') d~dn
*ON N+1,N+l n1

1 /4 11 14
where we write cd' as ( - V )E E Thus, V v W W : 4%

(Au - AUN )(v) = G(v) - AUN (v)

23
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= Gv) - C(v) + R(fuN , v)) ,

where (for E bounded; IRI as e 6N1 for E

IR(uN, v)l S CN Ivi 2N+2-VI

which together with strong monotonicity implies

a u-u N 14  I(Au-Au N (u-u N)I

- N 2N+2-/< CNju-uNI

With (10) this implies (with a new constant CN)

2N +2- 1

Iu-uNI ;S cN E 9 T

for n=1. Larger n change only the trivial and tiresome algebra.

We immediately obtain the following estimate in W 1 ,2 .

Corollary 1 Under the same hypotheses as in Theorem 3 and supposing that u,

uN W CN independent of E such that
II

Iu-uNI 2 S CN  2N+3/2

24
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Proof: Again, let n=i. Now string

IUUNI S (Au-Au ) (u-u N

S IR (u NP u-- N )I e2 +

R(u N v)f i + CuON) 2)1 + (u )cd' d~dr1

+ It ff (u NN 3 c'd d~dn

S C1 C Vv=cd E W 1,4

N M2 (0)

inequality (13) for vN = u- together to obtain the estimate; w.1.o.g. we

have let v=c *d , c l W,2n+2(01 ,d W12n2-1)

The next Thin. covers the case ij<0

Theorem 5. Let ~E R _, n ( Z + N E N,-3 CN independent Of E such

that if BE D(D 1N then

e(N,p 21 +d')

Iu-uNI S C N E (2n+1)
2  dn

where

e( =p 2N+2-p- 1n and

25



d~n) =(n+1)(2n+l)

Proof : Let ( Li,j] 21 - 2jw , i, j ( N)

u(i 'j) [ i j]-
UNN N

N [i,j 1<2N+2
i,j ( N

where u (iii) cn = Ji. x ,ij W k where (in case Pi Q) we take

the representative (i,j) for which -jW1 . The remainder of the proof is

then a mere imitation of the procedure shown in the previous proof with the

aid (as also there) of Thin. 2.

For jp0 , we need an extra assumption on8

-12n +2

Let B((Wl.n 2  
=w

1'2 satisfy:

The function C0  W 1,2n+2 (0,1) defined as the solution of
00

f 1{(C')2l c' + Ocjd& - 0 V Vc E W 1,2n 2 (0,1)
0 0 0

(A) satisfies that there exists u Wi (0)n+ (Q2) ,solution of
4(0)

Sf f (COn) '(0

for any given g E(W 1,2n+2 (9)) *
(0)

Theorem 6 Let j R , n i Z+ Let 8 satisfy assumption (A). V N EN,

26



let 86 D(DI) N Then 3 CN independent of E such that

e (N, v) +d (n,

Iu-UNI CN E (2n+1)2

where, again

e(N,ji) - 2N+2-I 2 ,and
2n+2

d(n,p) = 2n(1-I - n+)
2n +2

Proof: Let (with the [.,.] notation of Thm. 3)

(ij i j]

UN=( I N  2n+1

[i,j]<2N+2

i,j 'N

where u = k=O x~ i ' j) 'k where (for P Q) we take that

representative (ij) for which 2j ( 1 Otherwise the proof is like2n +1

that of Thm. 4 with the aid of Thm. 3 and the inequality (10) for p>O

Assumption (A) is rather restrictive and can be dispensed with through

containing ourselves to local estimates or estimates in weighted norms.

As presented in Corollary I for p=O, it is possible also for p*0 to

obtain estimates in the W1'2  - norm rather than the W ,2n 2  - norm.

(0) (0)

Corollary 2 Let .<O. Under the same hypotheses as in Thm. 4 and supposing

that u and uN ( WI' , 3 CN independent of c such that

27



lu-uN12 l cN  Ce(N, 1)

where e(N,O) is the one defined in Theorem 4 with n=O.

The proof is like that of Corollary 1.

Corollary 3. Let U>O. Under the same hypotheses as in Thm. 5 and supposing

that £ 2 n +I u and E2 nI uN ( Wi' , CN  independent of c such that

e(N,p) - 2nl
lU-UN2 S CN  E 2n+1

2 N

where e(N,P) is the one defined in Theorem 5 for n=O

Proof: As in Corollary 1,

Iu-NI s CN e(N,i)
2

but (13) now states

U-UN1 2 S C (IDul. + IDUNI )2n IUUN2

2n j

S C E 2n+I lu-uNI
2

The combination of the two inequalities completes the proof.

IIII

It is important to note that we have made the selection of basis or

Ansatz functions f i iO (and thus VN) by constructing uN out of
fu (i ,he e (i,J) (iJ) (i) )k (n) are[i"]2N2 where uN ( ,r) X [.kO k
N Ui,j](2N+2 k wNO k ~ kCr ae

determined through solving equations which are the weak variants of the formal

28
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matching equations already encountered in Section 4.J

We observe that for our model problem (the particular form of F given

in (2)), we obtain the same selection of {vi Ni.  (namely the even poly-

nomials) in a11 three asymptotic ranges (v-0 meaning finite limit load,

V<O : zero limit load, and p>O infinite limit load). This would hold

for more general F (see the paragraph following (9)) including such that

have a factor depending upon n (e.g., layered materials); here the selection

of would be made according to the same scheme, only, the sequence of i

second order differential equations determining would have coefficients

depending upon n and {1iF N O would no longer merely be polynomials.

In the next section we intend to show that this choice is optimal with

respect to W(O - norm convergence under appropriate boundedness conditions

on Du ,D uN  in L .
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6. The optimality of above selection of basis functions (at fixed N).

Define for 1)i}N N W1 ' 2n+2(-1.1)

WN I N c : W 1,2n+2 (0,1)1

i i =0 o 0

and let bp I. be the basis functions selected in the previous section

(defining VN). There we established the following convergence rate in

2) -norm for c tending to zero:

(0)

U-UN1 2  CN T(E)

under certain assumptions (see Corollaries 1,2, and 3), where

2N+2- , for USO
2

/ 2n2N+1- 2--1 , for 0 •
2 2n+1

E

Regarding the question of optimality of the selection of i, IN  we now
0

state and prove

Theorem 7. Let p S 0. Under the hypotheses of Corollaries 1 and 2, suppose

{@i IN  exists such that (for all N ( i)
i=O

inf _lu-wNi 2 S (E)
wN WN 2

for some function 0 with the property that

is bounded for all e > 0

30



Then WN - V N"

Proof: The proof is by induction on N. Take the particular function

vN  u N C related to uN  of Thm. 4 and 5. ' wN  t WN[iJ]2N

such that

I V N - ;NI 2

In particular, let N = 0:

I0 o 1 02 =Iu(
0860) E-~ =i 0C2c(

We thus get

3
Iu(°°  - o EllI o(C2)
(2

such that (if we denote w(00) w 0

2 2)
(0 0) -(0 0)I d (010) - (0,0

whenc w (0I ux (00 and I0  < E E

f 0 0 0(0 0l() _ ( ) d u00 (0 0)23

whence w (0;0 ) = u(O;O and u 0 =  0 ( W 0

Suppose next that { i IN-1 € span 0i }N , then there exists
i=O i0

wN WN  such that ([.,.] is defined in Thm. 2)

IVN- 2NI2

[i ,j ]<2N 2

2N + 3N IO(C 2 ,

31



where ukiO x 1 as before. This means that
N k k0 Xk 'k

[i,j]:2N N j)i~j]-" WNI 2

= (N,O) N E 2N-+ N- x(N,0) C2 N-4+ u (iJ)[ij]- N)
k-O [i,j]<2N

S 2 (N-p +3-0 (C 2

such that upon taking the limit e + 0 , span toi N . This completes

the proof.

We note that it is possible to trengthen this Thm. to allow 0 for

which

CC) E p  (W as E + 0 for any p E [0,2],

by employing

C- 2 (If ' (vN-wN)12 ) 2  " ( 2N-) "

This means that even if we were satisfied with a convergence rate of

2N+3 - - P , p 4 [0,2] , we would still need to use IN We shall

employ this technique in the next theorem.
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Theorem 8. Let p > 0. Under the hypotheses of Corollary 3, suppose

10i IN  exists such that (for all N ( N)

i=O

inf lu- WNI 2 : ()

wN E WN 2

for some function 0 with the property that

p+4n+1 
4+€( ) 2- u  n+

OE o() , as e + 0, for some p + 2 E [0,2]

Then W N V N
Pro:FrP+4n+I :, 30  h

Proof: For - [0, the proof would merely copy that of the

[i~j]-(j)2n+1 n
previous Thin. with vN - u[i,j]2N ij) i - and

[i,j] = 21 + 2jP
2n+1

As is, let N 0:
2n 3

U(00 2n+1 - ( 2n+1I

4n+p 3

and

1 - 2 2 __1I 32n+u2n+1 2
-E [ ff I u (0,') 2n+1 - w- ) 2 G( 2

a00 an 0 0 n 0 pn{0

Since a u (0,0) = 0 , letting e + 0 , 0, and span
an1 0 00

With this modification, the induction step will carry over from Thm. 7.

33//
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This ensures optimality for n-O and otherwise p < 2(2n+1)/(4n+1)

We emphasize that for V > 0 we used an L - bound on the gradients of

2n+I 2n+1
E u and E uN which implies that we have an E -dependent

constant C(IDul., jDvI.) in (13).

In Thms. 4-6 we established convergence rates for e tending to zero

with N fixed. Even though we are dealing with "thin" structures, e

nevertheless has some finite value over which we may have no control. Even

if s is "very small" we have seen that convergence rates are limited by the

degree of smoothnesss of the load B It is therefore of interest and im-

portance to prove convergence for the number of reduced models (N) increas-

ing.

I. -
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7. Optimal convergence for increasing number of reduced models.

Let >O be fixed. Let uN be the Galerkin solution in VN (given in

(8)) of (9) as before. Proving convergence of u- N for N tending towards
infinity reduces to an approximation theoretical problem because of (10). For

completeness we outline it here, cf. [31], Babuska, Szabo, and Katz [3], and

Canuto and Quarteroni [5] for L2 -theory and Meinardus [23] and Jackson [13]

for LO-theory. We then interpolate in order to obtain L2 n+2 -estimates.

Details are found in [14].

The solution u is an even function in n so we define for any p

[2, -] , m Z+:

m,p
W (-1,1) = wJ ,p(1 1 ) Iv:v eveni

^(I,m)p ^Ip ^mrp ^m' p

Let W W ) Iv v w I 2 po m Z where

m,p
v W if v and its first m partials w.r.t.n belong to LP in the

usual generalized sense. Define

Ivl(lm)p = Ivl p Lp  lv/nL p
W '

Let PN be the space of functions which are polynomials in n of degree at

, most N and PN be those functions in PN which are even in n

Using fairly standard argument along the lines of the references cited

above, one obtains:

Theorem 9. For all N EN, m £ Z+ ,there exists an operator

.0 ,m)2 ^ I, 1,2
A W (n2) w (n2)I 2N : ( ,r)O " 2N --

TK 35
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which is a continuous linear mapping:

1 ~ 1m)2 .1,2

2N ( , W ())) and

(.,m)® , wI 2N (W(&, n) W (0))

with norms bounded by a constant times (2N)

We then obtain the main result of this section.

Theorem 10. Let u W 0,m)2n 2 (Q) for an m 6 Z+ , n ( Z+ . Then therec ,n)
exists a positive C independent of u and N such that for N ( Z+

inf Iu-vl- 1,2n+2 1-r (1m)
v(V N  W 2n 2

Proof. Employ interpolation by the K-method, see Bergh & Lofstrom [4] Thm.

6.45 (5), we obtain from Thm. 9 (choose 8 = 1/(n+l))

.(l,m)2n+2 .1,2n+2( I - -2 N )W ( ~ )W( )

with a bound on the norm proportional to (2N)1 -n

I/I

This yields the immediate

Corollary 4. Let w E R , n e Z+ . V N Z+ , C > 0 independent of N

(! ,m)2n+2

such that, if uf W (Q)

1-m

Iu-u 2 NI S C (2N)
2 n

36
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7-4 - -W7 --- -- .V - -- >

u being the exact Galerkin solution of (7).

Proof: Combine (10) with Theorem 10.

/11/°

The similar Corollary about W1 '2 -rates out of Thm. 9 is

Corollary 5. Let p ( R , n E Z . V N E Z+ , 3 C > 0 independent of

^( I ,m) 2

N such that, if u ( W (Cn (0)( W I '- , ju2NI bounded in W1 ' uniformly,

( In) C 2N -
N12Iu-uNI2 -< C(2N) ! - ..

.. D -

Proof: Combine (13) with Theorem 9.

IIII - "''

We will be in the position to show that the subspace VN gives quasi-

optimal rates of convergence in W1 '2 (in the sense of n-widths) after the

following definitions (i.e., in general one could only improve the constant

not the rate):

The (Kolmogorov) N-width of W (a subset of W1 ,2) in W1 ,2 (j) is given

by

1 2;
dN(W;W 1 ') = inf {E(W; WN):WN is an N-dimensional subspace of W

where

E(W; WN) = sup inf Ix-y.

x E W y (WN

is the deviation of W from WN •

A subspace WN of W of dimension at most N for which ."-'

dN(W; W1 ' 2 ) = E(W; WN

37



is called an optimal supspace for dN(W, W1 ,2 ). The notation follows that of

the monograph by Pinkus [27]

Let W = Wm,2n 2(-1,1) In said monograph [27], the N-width is com-

puted in Chapter VII. Set B = jv ( W:IjVI1 , then there exist positive

constants C and D independent of N for which

D(2N)-m - dN(B; L2) C C(2N)-m

This yields immediately

1-rn2 1-rn
D(2N) S dN(B, W2(-1,1)) C(2N) 1 - n

In view of the denseness of W 1 ,2 n +2  W 1,2n2 (-1,1) In W 12n02(Q)0 001

this shows that the estimate in Corollary 5 is optimal (modulo the constant C)

and that this is obtained by the subspace VN Thus {iI (or any

I IN 
i=0

Oi i=o with the same span) provides a quasioptimal choice with regard to

convergence at fixed e for the number of reduced models (N) increasing.
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8. Computational results

Consider the numerical problem of finding the dimensionally reduced solu-

tion of (7) within VN . Let n=1 in (2) as an example. We will consider two

loads 8 : $=1 and 8(x) = xlr 2(1+3A 2cos 2 x)sinrx. We limit ourselves in

advance to N = 0, 1, and 2.

2 4
Select 0=1, 02= , and 04" These form the same span as the first

three qp as could be found from Thms. 1 and 2. Let

Nu N  j 0 v 2.(00 2j (n)
UN =0 2

with v2j tW (0,1) . Substituting this expression into (7) yields a system

of N nonlinear, second order ordinary differential equations in , upon

integration w.r.t.q over [-1,1], to be solved for v2j We convertintegration ' 2j j=O W ovr

this into a first order system. Let wj+ I  = v2 , and wj+N+2 = v j for

O~j N . We arrive at

A(w)w' = R(w,B)

where w = (w(j)) 2N+2 A ( R2N +2x 2 N+2  , and R R2 N +2 . Upon inversion

of A , the system is in a state such that it is numerically solvable using

the nonlinear ODE-system's solver written by V. Majer, cf. Babuska and Majer

[21], and Majer [22].

From that point on we have taken mainly two approaches. The first to be

mentioned is applicable in general for nonsmooth or noncompatible boundary

loads 8 as well as for all three asymptotic ranges (p<O, p=O, and p>O ).

The second is applicable only for smooth, compatible 8 and for pSO , in

which cases an asymptotic expansion can be generated automatically.
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We now describe the performance of the first approach. Let $al (non-

compatible) as an example.

The exact energy Cand solution) being unavailable, it is rather found by

extrapolation from the energies EVu 0), E(ul), and E(u2).

It is intuitively obvious that In the range ID Cuj«1, V~u N)-E(u) can be

interpreted as the square of the difference in the H' -norm. Also, there is

some relation to the difference in the Wl"4-norm. Define

2 1 2 2
O:R ) p -~ O(P) 0 C14,~P,2)IP, Then

E(u N)-E~u) = ff f d p (D Eu~s(D e(u N-u)))-D C u N-u)dsddi G~u N-u)
N 2~~ ~ 0 p N£

and since

f I f QE d p VD Eu)*D E(u N-u) - G(u N-u) = 0

Cu is the minimizer) we get

1
V~u )-E(u) = f HED Cu -u)H D Cu -U)N 2 E N E N

where H f f d d2 O(D u + tD Cu -u)) dt ds with
0 0 p E E N

(d 2 ) 6 = C + jI12) + 2p . Th4s we can estimate with

1,2 >0-

EVu) -E~u) ~ 4 X E f f .I D C(uNu) 12 + 1 ID ~NuI4 and

EVu N) E~u) S E f f I~ D ECu N-u)I 2

+3X 2 {IDEu1 2 ID E(u N-U)I + ID E(u N-u)'41
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If we furthermore assume that UN,U ( W1'' with IDEuN1. , IDCul < M for

all N for some positive constant M , then said relationships between the

difference in energies and the norms of the energies emerge:

Eu N ) - E(u) - IUN-UIl21
N H

A 14 S E(u E(u) 1 + 15X 2M) 2 212uN-U 12

JluN-uI l C N '' 2 II2L~I~I~u

The latter assumption is dubious however in the limit E + 0 for i > 0 (see

Lemma 1). With said assumption, Kosler [19] proved the usual Cea's Lemma type

estimate lu-uNl1  CN inf vN j VN Iu-vNI1 . See (13). For 4 S 0

we thus expect "linear" behavior (as well as for 0 = , if M <). See

Corollaries 1 and 2.

The expected rates of convergence (for c + 0) measured w.r.t.

difference in energy are (cf. Vogelius & Babuska [30] for V=1, linear case)

Linear Nonlinear*

(N=O,1,2) (N=0,1,2)

= -' (5,6,6) (-, 19 ___)19

~S i=0 (3,4,4) (1, ,

1 (1,2,2) (3, 1 )

where the * indicates that they are based upon W1'4-est imates. If we used

the W1 ,2-estimates, we would get the rates for the linear case except that

for vi=1 , we get ( 3, 3') instead.
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C E(u0 )-E(u) E(u ) -E(u) E(u2 ) -E(u)

.1 6.35 e-8 2.93 e-10 1.35 e-12

-1 .01 6.614 e-13 2.80 e-16 1.18 e-19

.001 6.66 e-18 0 0

.0001 7.00 e-23 0 0

.1 6.31 e-6 2.92 e-8 1.34 e-10

0 1032 2.07 e-7 2.92 e-10 4.12 e-13

.01 6.62 e-9 3.90 e-12 2.29 e-15

10-5/2 2.10 e-10 0 0

1. 5.90 e-9 6.44 e-10 7.03 e-11

+1 .1 9.92 e-10 4.58 e-12 2.11 e-114

.01 1.0~4 e-10 4.140 e-114 1.87 e-17

.001 1.03 e-11 1.00 e-114 9.69 e-18

Table 1

Differences in energy dependent upon E and j~for $ ml.

The last column E(u2)-E~u) has an extra factor E built in on account of the

extrapolation. We notice the expected linear rates for ji(0 , to some extent

v0,and in an e-range for V>0 , whereas there is an expected marked

slowdown for pi>O as E + 0

The convergence rates for N-w exhibit the same type of behavior. From

VogeiusandBabuska [31], we expect E~u N)-E(u) - N ,see Figs. 1, 2, and 3.
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i0 +1 N=1,2 0=1.77x10-
4

I0
" 1 °

Fig. 3. Error in energy

.O0 vs. degree of polynomial

S Ofor 11= +1 at e =1.,

z .1, .01, and .001

4ziO-

0.001
4F -9?

0OIOI

1 2 3 4 5

2N

The higher order (N) models become necessary not only for e not

small, but also when sufficient smoothness is absent (boundary- and interior

layers). Pertaining to the latter case, we also need to show extra considera-

tion when we want to resolve the (from a practical viewpoint very interesting)

"nonsmoothness" in the solution well. This would namely mean that we would

like to resolve wj, j large, well. But wj's support lies in a (still)

narrow(er) band near the singularity (for J/e large enough) calling for

separate adaptively generated meshes for those wj For the linear case, see

Vogelius and Babuska [32]. See Figs. 4, 5, 6, 7, 8, and 9.
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We now describe the performance of a second approach applicable for

smooth, compatible 8 and pO In this case, it is possible to generate an

asymptotic series for the exact solution along the lines of Section 4. Taking

a sufficiently large number of terms in this series, it is thus feasible to

make direct error computations in the relevant norms. As an example, take

B - A 2 (1+3A2 it2cos 2 x)sinx, , where A is a continuation parameter.

(This choice corresponds to taking C0 = Asinx, cf. Lemma 1 part (ii).)

Let the exact solution be given by (cf. Thm. 2 with subsequent remark)

U - I uQ ) 2j
j=O

where each

u(j = aj 2k ()n , jN.

k =0
a

Denote by ua the Mth partial sum in the above asymptotic series. Then
Ma

uI - IUM-UNI I S lu-u~l

where lU-UN1 is sought for, Iu a-UN is computable, and, by inspection

lu-u 11, 2  " °(2M + 3/2)

and lu-u a1 4  0(E2M + 5/4)

From Cor. 1 and Thm. 3 it follows that

IU U Nl, 2  = O(E2N + 3/2)

2N + 7/4 1 1

and u-uN1,4  = 0( 9 6)

To investigate the asymptotic rate of convergence for e + 0 for N>0 and 1
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respectively it will thus suffice to take M=1 and 2 (for the W1'2-norm) and

M-O (for the W1'4-norm).

The terms u(j ) , J-O, ..., M , are generated via SMP (the symbolic

manipulation program by Inference Corporation) using the recursive formulae in

the proof of Thm. 2 with the twist that jjO IUM-UNI is then computed via

Simpson's rule over 51 points in [0, 1/2].

On the next two figures (Figs. 10 and 11) are shown the errors in the two

names W1'2 and W 1,4 for N=O. We see the optimal rate for lu-uN1l, 2  and

observe a rate for Iu-uNl,4 , which, not surprisingly, is superior to the

rate of Thi. 3; in fact we get the rate achievable with 1 term (M-O) in the

asymptotic expansion.

I Il .. . . . ... ..l~ ~ l I . ....."I . . ......1 . . ......

-(2

Fig 10. Error in W1, 2

-d3
10- norm for N - 0 (M - 1

* 4 and 2), A - .1414, and

0 .

1(5 7 3/2

:: -8

-4 -3 -2 I
10 10 10 10
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.

1I

Id~2_
Fig. 11. Error in W1 ,4

10 - norm for N = 0 (M =1

and 2), i = .1414 , andId-4

107 5/4 0.
i-5

IdI (dj
-( 6 . . ,, ,, . . . , ...... .

10 10 10 10

Our choice of 0r 019 and *2 was not ideal; it made some algebra

handier, out for larger N one sould need to find ij out of Thm. 1 and 2 to

maintain an easily invertible A(w) as well as ensure that w + 0 fast as

+0 .

Computations were also carried out for other types of functions F

(see(1)) exhibiting much the same behavior (although a less extensive analysis

was done, see [14]) and also for the linear case (F is the identity) where it

was possible to compare the CPU time spent with that of another solver: FEARS

(Finite Element Adaptive Research Solver), cf. [23], solving (4) directly, and

our method compared favorably (about 30 times faster; it should be noted,

though, that FEARS is a more general purpose solver).
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We conclude that our approach yields an efficient numerical procedure for

solving (7) for E small, and smooth compatible boundary data as well as for

E not small or in the presence of some layer in the solution.

More precisely, we would like to emphasize the following conclusions:

1. There is for domains like ours and possibly archetype domains a large

savings in computational effort compared to standard nondimensional

reduction solvers.

2. The approach is a general one, which no doubt can be adapted to other

"stress-strain laws" as expressed through the function F in (1) as well

as other types of boundary conditions.

3. The selection of basis functions I*.} is robust in at least three ways.

a. Even though the selection was motivated by small values of the half-

thickness of the domain (E) , it works quite well for e not small

(c = 1 e.g.) without having to use an excessive number (N) of

basis functions.

b. Even in the presence of nonsmooth or noncompatible loads giving rise

to layers in the solution, the method works well by picking these

layers up in the coefficient functions Iv.} to the basis func-

tions. These v. 4 0 fast as j/c * and thus rough input data

are taken care of at fixed e through increasing N at least near

the layer.

c. Through the parameter V we have introduced three asumptotic ranges

of loads: zero (p<O), finite (P-0), and infinite (p>0) limit load.

We showed that one should select the same basis functions in each of

the three cases. Also computationally the method works equally well

in all three cases.
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4. The method lends itself to adaptivity or the "feed-back" approach in at

least two ways.

a. At fixed N , the ODE solver used is actually already adaptive, see

Babuska and Majer [21] and Majer [22].

b. We would like to propose the following generalization of the method

in this paper: let the choice of N be made locally in each subin-

terval of some given mesh on the basis of local error estimators. We

conjecture that the computational effort thus involved would be far

less than that involved in "feed-back" or adaptive methods for

standard solvers since the dimension of the problem has been reduced

by one.
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